SOME REMARKS ON COMMUTATIVE ALGEBRAS OF OPERATORS ON BANACH SPACES(1)

BY

D. A. EDWARDS AND C. T. IONESCU TULCEA

Introduction. In this paper a series of propositions are given concerning commutative algebras of operators on a Banach space and more especially commutative algebras of scalar operators. A number of the results are known and due to W. G. Bade [1; 2] but different proofs are given here. The inspiration for this paper, both in the choice of the subject matter and of method, has largely been derived from [2; 7] and [10].

The material presented here is divided into four paragraphs. The first, which is introductory, contains various results on spectral families of measures. The principal propositions are contained in paragraphs 2 and 3. Theorem 1, proved in paragraph 2, is a generalisation of a theorem due to W. G. Bade [2], and almost all the other results of this same paragraph are more or less consequences of it. In paragraph 3 it is shown that, under certain conditions, an algebra of scalar operators can be identified, in a sense made precise below, with a von Neumann algebra. This fact makes it possible to reduce many results concerning algebras of scalar operators or σ -complete boolean algebras of projections, in Banach spaces, to corresponding results in Hilbert spaces. Various remarks on spectral families of measures are made in paragraph 4.

1. Spectral families. Let Z be a compact space, C(Z) the set of complex-valued continuous functions defined on Z, $B_0(Z)$ the set of complex-valued Baire measurable functions defined on Z and B(Z) the set of complex-valued Borel measurable functions defined on $Z(^2)$.

Let X be a Banach space, X' the dual of X and $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ a family of Radon measures defined on Z. We shall say that \mathfrak{F} is semi-spectral if:

- (1) $(x, x') \rightarrow \mu_{x,x'}$ is a bilinear mapping;
- (2) there is a constant $M(\mathfrak{F}) \geq 1$ which satisfies the inequalities $\|\mu_{x,x'}\| \leq M(\mathfrak{F})\|x\| \|x'\|$ for every $x \in X$, $x' \in X'$.

We shall say that a function $f \in B(Z)$ is \mathfrak{F} -negligible if $|\mu_{x,x'}|^*(|f|) = 0$ for every $x \in X$, $x' \in X'$. A Borel measurable set $A \subset Z$ is \mathfrak{F} -negligible if the characteristic function of A, ϕ_A , is \mathfrak{F} -negligible. For every function $f \in B(Z)$ we shall put $N_{\infty}(f,\mathfrak{F}) = \inf E(f)$ where E(f) is the set of numbers $\alpha > 0$ for which

Presented to the Society, January 22, 1959; received by the editors October 13, 1958.

⁽¹⁾ This paper was sponsored by the Office of Scientific Research, United States Air Force, under contract SAR AF 49 (638)-153.

⁽²⁾ For the definition of Baire sets and Borel sets see [12]. For other definitions and results of integration theory see [6].

the set $\{z \mid |f(z)| > \alpha\}$ is F-negligible. If f is continuous then $N_{\infty}(f, \mathfrak{F}) = \sup_{z \in S} |f(z)|$ where S is the closure of $\bigcup_{x \in X, x' \in X'} S(\mu_{x,x'})$; for a Radon measure μ on Z, $S(\mu)$ will denote its support.

We shall write $B_0^{\infty}(Z) = \{ f \in B_0(Z) \, \big| \, N_{\infty}(f, \, \mathfrak{F}) < \infty \}$ and $B^{\infty}(Z) = \{ f \in B(Z) \, \big| \, N_{\infty}(f, \, \mathfrak{F}) < \infty \} \, ; B_0^{\infty}(Z) \text{ and } B^{\infty}(Z) \text{ are algebras and } f \to N_{\infty}(f, \, \mathfrak{F}) \text{ is a semi-norm on } B_0^{\infty}(Z) \text{ and also on } B^{\infty}(Z). \text{ It is easy to see that } B_0^{\infty}(Z) \text{ and } B^{\infty}(Z) \text{ are complete for the semi-norm } f \to N_{\infty}(f, \, \mathfrak{F}) \text{ and that, for } f, g, h \in B^{\infty}(Z), \text{ we have } N_{\infty}(f, \, \mathfrak{F}) = N_{\infty}(f, \, \mathfrak{F})^2 \text{ and } N_{\infty}(gh, \, \mathfrak{F}) \leq N_{\infty}(g, \mathfrak{F}) N_{\infty}(h, \, \mathfrak{F}).$

For each $f \in B^{\infty}(Z)$ we denote by $U_{\mathfrak{F},f}$ the operator in $\mathfrak{L}(X,X'')(^3)$ which satisfies the equations $\langle U_{\mathfrak{F},f}x,x'\rangle = \int f d\mu_{x,x'}$ for all $x \in X$, $x' \in X'$; \int means always \int_Z . When there will be no ambiguity we shall write only U_f instead of $U_{\mathfrak{F},f}$. In what follows we shall always suppose that all the semi-spectral families considered are such that $U_f \in \mathfrak{L}(X,X)$ for $f \in C(Z)$ and $U_1 = I$. It is easy to see that if \mathfrak{F} is a semi-spectral family, $f \in B^{\infty}(Z)$ and $U_f \in \mathfrak{L}(X,X)$, then U_f belongs to the strong closure (= weak closure) of $\mathfrak{L}(\mathfrak{F}) = \{U_f | f \in C(Z)\}$. A family $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ of Radon measures defined on Z is a spectral family if it is semi-spectral and if:

(3)
$$f \cdot \mu_{x,x'} = \mu_{U_f x,x'} \qquad \text{for all } f \in C(Z), x \in X, x' \in X'.$$

If $\mathfrak F$ is spectral then $f{\to}U_f$ is a continuous representation of the algebra C(Z), endowed with the semi-norm $f{\to}N_\infty(f,\mathfrak F)$ into $\mathfrak L(X,X)$; it follows that $\mathfrak L(\mathfrak F)$ is an algebra. Conversely if $\mathfrak F$ is semi-spectral and $f{\to}U_f$ is a representation of the algebra C(Z) into $\mathfrak L(X,X)$, then $\mathfrak F$ is spectral. Let us also remark that (3) implies $f{\cdot}\mu_{x,x'}=\mu_{x,t'}U_{fx'}$ for every $f{\in}C(Z)$, $x{\in}X$, $x'{\in}X'$; tU_f denotes the Banach adjoint of U_f .

Let A be a nonempty bounded subset of X and suppose that $\mathfrak F$ is spectral. For every $f\in B_0(Z)$ define $p(f,A)=\sup_{x\in A,\|x'\|\leq 1}\big|\mu_{x,x'}\big|^*(|f|)$; let $B_0(Z,A)=\{f\in B_0(Z)\big|p(f,A)<\infty\}$. If $T\in \mathfrak L(X,X)$ and if $TU_fx=U_fTx$ for all $f\in C(Z)$ and $x\in A$ then it is easy to see that $p(f,T(A))\leq \|T\|p(f,A)$ for every $f\in B_0(Z)$ and hence that $B_0(Z,A)\subset B_0(Z,T(A))$. If $A_1\subset A_2$ then $B_0(Z,A_1)\supset B_0(Z,A_2)$.

PROPOSITION 1. (i) $B_0(Z, A)$ is a linear space and $B_0(Z, A) \supset B_0^{\infty}(Z)$; (ii) $f \rightarrow p(f, A)$ is a semi-norm on $B_0(Z, A)$; (iii) $B_0(Z, A)$ is complete with respect to the semi-norm $f \rightarrow p(f, A)$.

Assertions (i) and (ii) are obvious. To prove (iii) let $(f_n)_{1 \le n < \infty}$ be a sequence of functions belonging to $B_0(Z,A)$ for which $\sum_{n=1}^{\infty} p(f_{n+1}-f_n,A) < \infty$. Then for every $x \in A$ and $||x'|| \le 1$ we have $\sum_{n=1}^{\infty} |\mu_{x,x'}|^* (|f_{n+1}-f_n|) < \infty$. Hence $\lim_{n\to\infty} f_n(z)$ exists for $z \notin N_A$ where N_A is a Baire set which is $|\mu_{x,x'}|$ negligible for every $x \in A$ and $x' \in X'$. If we put f(z) = 0 for $z \in N_A$ and $f(z) = \lim_{n\to\infty} f_n(z)$ for $z \notin N_A$ then $f \in B_0(Z)$, and for $n \ge 1$, $x \in A$ and $||x'|| \le 1$ we

^(*) If X, Y are Banach spaces we shall denote by $\mathcal{L}(X, Y)$ the space of linear continuous mappings of X into Y, endowed with the usual norm.

have $|\mu_{x,x'}|^*(|f-f_n|) \leq \sum_{j=n}^{\infty} |\mu_{x,x'}|^*(|f_{j+1}-f_j|) \leq \sum_{j=n}^{\infty} p(f_{j+1}-f_j, A)$ and hence $p(f-f_n, A) \leq \sum_{j=n}^{\infty} p(f_{j+1}-f_j, A)$. This implies that $f \in B_0(Z, A)$ and that $\lim_{n\to\infty} p(f-f_n, A) = 0$.

For each bounded nonempty subset $A \subset X$ we denote by $B_0^1(Z, A)$ the closure of $B_0^{\infty}(Z)$ in $B_0(Z, A)$ and by $L^1(Z, A)$ the closure of C(Z) in $B_0(Z, A)$. It is obvious that $fg \in B_0^1(Z, A)$ if $f \in B_0^1(Z, A)$ and $g \in B_0^{\infty}(Z)$ and that $fg \in L^1(Z, A)$ if $f \in L^1(Z, A)$ and $g \in L^1(Z, A) \cap B_0^{\infty}(Z)$. Also it is easy to prove that if $f \in L^1(Z, A) \cap B_0^{\infty}(Z)$ then there is a sequence of functions $(f_n)_{1 \le n < \infty}$ belonging to C(Z) such that we have $\lim_{n \to \infty} p(f_n - f, A) = 0$ and $||f_n|| = \sup_{z \in Z} |f_n(z)| \le N_{\infty}(f, \mathfrak{F})$ for $n = 1, 2, \cdots$. If $T \in \mathfrak{L}(X, X)$ is such that $TU_f x = U_f Tx$ for all $f \in C(Z)$ and $x \in A$ then we have $B_0^1(Z, A) \subset B_0^1(Z, T(A))$ and $L^1(Z, A) \subset L^1(Z, T(A))$. If $A_1 \subset A_2$ then $B_0^1(Z, A_1) \supset B_0^1(Z, A_2)$ and $L^1(Z, A_1) \supset L^1_0(Z, A_2)$. In connection with the spaces $B_0(Z, A)$, $B_0^1(Z, A)$, $L^1(Z, A)$ and Proposition 1 see also [15].

Proposition 2. For every bounded nonempty subset $A \subset X$ and $f \in B_0^{\infty}(Z)$

$$(4) \qquad (1/M(\mathfrak{F}))p(f, A) \leq \sup_{x \in A} ||U_f x|| \leq p(f, A).$$

The first inequality, $(1/M(\mathfrak{F}))p(f, A) \leq \sup_{x \in A} ||U_f x||$, follows from the relations

$$p(f, A) = \sup_{x \in A, \|x'\| \le 1} \left(\sup_{\|\phi\| \le 1} \left| \int fg d\mu_{x,x'} \right| \right)$$

$$\le M(\mathfrak{F}) \sup_{x \in A, \|x'\| \le 1} \left| \langle U_f x, x' \rangle \right| \le M(\mathfrak{F}) \sup_{x \in A} \left\| U_f x \right\|.$$

The second inequality, $\sup_{x \in A} ||U_f x|| \le p(f, A)$, is obvious. Hence the proof is complete.

For every $f \in B_0(Z)$ let $D(f) = \{x \in X | f \in B_0^1(Z, \{x\})\}$; using the inequalities (4) (for $A = \{x\}, x \in X$) we can easily prove that there is a mapping U_f of D(f) into X'' such that $\langle U_f x, x' \rangle = \int f d\mu_{x,x'}$ for every $x \in D(f)$ and $x' \in X'$. If $f \in L_0^1(Z, \{x\})$ ($\subset B_0^1(Z, \{x\})$) then $U_f x \in X$. Again using the inequalities (4) and the definition of the spaces $B_0^1(Z, A)$ we see that:

Proposition 3. For every nonempty bounded subset $A \subset D(f)$ and $f \in B_0^1(Z,A)$

$$(5) (1/M(\mathfrak{F}))p(f, A) \leq \sup_{x \in A} ||U_f x|| \leq p(f, A).$$

For every nonempty bounded subset $A \subset X$ let X(A) be the linear space of all bounded families $y = (y_x)_{x \in A}$ of elements belonging to X, endowed with the norm: $||y|| = \sup_{x \in A} ||y_x||$; X(A) is a Banach space. If $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ is a spectral family of measures we shall denote by $\mathfrak{A}(\mathfrak{F}, A)$ the closure of the subset $\{(U_f x)_{x \in A} | f \in C(Z)\} \subset X(A)$.

PROPOSITION 4. For every nonempty bounded subset $A \subset X$ $\mathfrak{A}(\mathfrak{F}, A) = \{(U_f x)_{x \in A} | f \in L^1(Z, A)\}.$

Let $f \in L^1(Z, A)$ and let $(f_n)_{1 \le n < \infty}$ be a sequence of functions belonging to C(Z) such that $\lim_{n \to \infty} p(f - f_n, A) = 0$. Then $\lim_{n \to \infty} (\sup_{x \in A} \left\| U_{f_n} x - U_f x \right\|) = 0$ and hence $(U_f x)_{x \in A} \in \alpha(\mathfrak{F}, A)$. Conversely let $y = (y_x)_{x \in A} \in \alpha(\mathfrak{F}, A)$. Then there is a sequence $(f_n)_{1 \le n < \infty}$ of functions belonging to C(Z) such that (in X(A)) $y = \lim_{n \to \infty} y^n$ where for each $n = 1, 2, \cdots, y^n = (U_{f_n} x)_{x \in A}$. From (4) we deduce that $\lim_{n,m \to \infty} p(f_n - f_m, A) = 0$ and hence that there is a function $f \in L^1(Z, A)$ for which $\lim_{n \to \infty} p(f_n - f, A) = 0$. Using (5) we now deduce that $y = (U_f x)_{x \in A}$.

Let $\mathfrak F$ be a spectral family of measures defined on Z. If $U_g = U_h$, where $g, h \in B^{\infty}(Z)$, then using (3) we deduce that g - h is $\mathfrak F$ -negligible. This remark implies that we can introduce an involution in $\mathfrak A(\mathfrak F)$ by writing $U_f^* = U_f$. The inequalities (4) show that the mapping $T \to T^*$ of $\mathfrak A(\mathfrak F)$ onto $\mathfrak A(\mathfrak F)$, just defined, is strongly continuous and it can accordingly be extended to the strong closure, $s(\mathfrak A(\mathfrak F))$, of $\mathfrak A(\mathfrak F)$; it is clear that the extension is an involution on $s(\mathfrak A(\mathfrak F))$.

In what follows we shall often be concerned with spectral families $\mathfrak T$ which have the property:

(E) $U_f \in \mathfrak{L}(X, X)$ for every $f \in B_0^{\infty}(Z)$.

Let $S_0(Z)$ be the class of all Baire sets $D \subset Z$. For every $D \in S_0(Z)$ define $E_{\mathfrak{F}}(D) = U_{\phi_D}$; then $E_{\mathfrak{F}}$ is a strongly countably additive (s.c.a.) spectral measure on $S_0(Z)$ such that $E_{\mathfrak{F}}(Z) = I$. Conversely, if E is a s.c.a. spectral measure on $S_0(Z)$ such that E(Z) = I and if we put $\mu_{x,x'}(f) = \int f(z) d\langle E(z)x, x' \rangle$ for all $f \in C(Z)$, $x \in X$, $x' \in X'$, then $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ is a spectral family having property (E) and $E_{\mathfrak{F}} = E$.

If \mathfrak{F} is a spectral family having property (E) then it is easy to see that $U_f \in \mathfrak{L}(X, X)$ for every $f \in B^{\infty}(Z)$. This can be deduced, for instance, using the following result: (*) Let $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ be a spectral family of measures on a compact space Z having property (E) and let $x \in X$; then there is a positive Radon measure ν_x on Z such that (for $N \in S_0(Z))\nu_x(N) = 0$ if and only if $|\mu_{x,x'}|(N) = 0$ for all $x' \in X'$. Let us remark that every U_f , $f \in B^{\infty}(Z)$, is a scalar operator whose resolution of the identity is a s.c.a. spectral measure on $S_0(\sigma(U_f))$ [10, pp. 341–342, Lemma 6] and that $U_{gh} = U_g U_h$ for every g, $h \in B^{\infty}(Z)$.

For a spectral family \mathfrak{F} having property (E) we have, for each $f \in B^{\infty}(Z)$, the following inequality which may be established by the method used in the proof of Proposition 2, [7, pp. 177–178]:

$$(6) N_{\infty}(f,\mathfrak{F}) \leq ||U_f|| \leq M(\mathfrak{F})N_{\infty}(f,\mathfrak{F}).$$

Let $\mathfrak F$ be a spectral family on Z, having property (E), and let $\mathfrak G_0(\mathfrak F) = \{U_f \big| f \in \mathcal B_0^\infty(Z)\}$ and $\mathfrak G(\mathfrak F) = \{U_f \big| f \in \mathcal B^\infty(Z)\}$. Using (6) we see that $\mathfrak G_0(\mathfrak F)$ and $\mathfrak G(\mathfrak F)$ are uniformly closed and that each is algebraically and topologically isomorphic with an algebra $C(\widehat{Z})$ where \widehat{Z} is a compact space. It is easy to see that $\mathfrak G_0(\mathfrak F)$ is the smallest uniformly closed algebra containing $\{E_{\mathfrak F}(A) \big| A \in S_0(Z)\}$. Using the fact that, if $f \in C(Z)$, $N_\infty(f, \mathfrak F) = \sup_{z \in S} \big| f(z) \big|$,

where S is the closure of $\bigcup_{x \in X, x' \in X'} S(\mu_{x,x'})$, we see that $\alpha(\mathfrak{F})$ is algebraically and topologically isomorphic with C(S) (this last assertion remains true also for spectral families which do not satisfy condition (E)).

2. Commutative algebras of operators. Let $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ be a spectral family of Radon measures defined on a compact space.

THEOREM 1. Let A be a nonempty bounded subset of X and suppose that $T \in \mathcal{L}(X, X)$ is an operator such that: (i) $TU_f x = U_f Tx$ for all $f \in C(Z)$ and $x \in A$; (ii) $(Tx)_{x \in A} \in \mathfrak{A}(\mathfrak{F}, A)$. Then there is a function $g \in L^1(Z, A)$ such that: (j) $||g|| \leq M(\mathfrak{F})||T||$; (jj) $U_g x = Tx$ for every x belonging to the closed linear space \mathfrak{M} spanned by $U_{x \in A} \circ \mathfrak{A}(\mathfrak{F}, \{x\})$.

By Proposition 4 there is an $h \in L^1(Z, A)$ such that $U_h x = Tx$ for every $x \in A$. Let $B = \{z ||h(z)| \ge (1+\lambda) M(\mathfrak{F})||T|| \}$ where $\lambda > 0$ (we can suppose $T \ne 0$). It is obvious that $h\phi_B \in B_0^1(Z, A)$. Choose a sequence $(h_n)_{1 \le n < \infty}$ of functions belonging to C(Z) such that $\lim_{n\to\infty} p(h_n-h, A) = 0$. By (5) this gives $\lim_{n\to\infty} U_{h_n} x = Tx$ for each $x \in A$, and hence (since the condition (ii) implies $\mu_{Tx,x'} = \mu_x, \iota_{Tx'}$ for $x \in A$ and $x' \in X'$)

$$\begin{split} \langle U_{\phi_B} x, {}^{\iota} T x' \rangle &= \int \phi_B d\mu_{x, {}^{\iota} T x'} = \int \phi_B d\mu_{T x, x'} \\ &= \lim_{n \to \infty} \int \phi_B d\mu_{U_{h_n} x, x'} = \int h \phi_B d\mu_{x, x'} = \langle U_{h \phi_B} x, x' \rangle; \end{split}$$

the above equations imply $||U_{\phi_B}x|| ||T|| \ge ||U_{h\phi_B}x||$ for each $x \in A$. Using again (5) we deduce that $p(\phi_B, A)||T|| \ge \sup_{x \in A} ||U_{\phi_B}x|| ||T|| \ge \sup_{x \in A} ||U_{h\phi_B}x||$ $\ge (1/M(\mathfrak{F}))p(h\phi_B, A) \ge (1+\lambda)p(\phi_B, A)||T||$. It follows that $p(\phi_B, A) = 0$ and hence that $|h(z)| \le M(\mathfrak{F})||T||$ except when $z \in N_A$, where N_A is a Baire set such that $|\mu_{x,x'}| (N_A) = 0$ for every $x \in A$ and $x' \in X'$. If we define g as follows: g(z) = h(z) if $z \notin N_A$ and g(z) = 0 if $z \in N_A$, then $g \in L^1(Z, A)$, $||g|| \le M(\mathfrak{F})||T||$ and obviously $U_{g}x = Tx$ for each $x \in A$ (in fact we have p(g-h, A) = 0). Take a uniformly bounded sequence $(g_n)_{1 \le n < \infty}$ of functions belonging to C(Z) such that $\lim_{n \to \infty} p(g_n - g, A) = 0$. For each $f \in C(Z)$ we have then: $g \in L^1(Z, U_f(A))$, $\lim_{n \to \infty} p(g_n - g, U_f(A)) = 0$, $gf \in L^1(Z, A)$ and $\lim_{n \to \infty} p(g_n f - gf, A) = 0$. We deduce that, when $x \in A$, $U_g U_f x = \lim_{n \to \infty} U_g u_f x = \lim_{n \to \infty} U_f U_{gn} x = U_f U_g x = U_f T x = T U_f x$. Since \mathfrak{M} is the closure of the set of all finite sums $\sum U_f x_i (f_i \in C(Z), x_i \in A)$ we deduce (jj) and hence the proof of the theorem is complete.

REMARK. The assertion (jj) can be strengthened. We have $U_{\sigma^p} = T^p x$ for every $p = 1, 2, \cdots$ and $x \in \mathfrak{M}$. In fact suppose the equations valid for p-1 (p>1) and remark that $T(\mathfrak{M}) \subset \mathfrak{M}$. Then for all $x \in A$, $x' \in X'$

$$\langle U_{g^p x}, x' \rangle = \lim_{n \to \infty} \int g_n^{p-1} g d\mu_{x,x'} = \lim_{n \to \infty} \int g d\mu_{x, \iota} U_{g(n, p-1)^{x'}}$$

$$= \lim_{n \to \infty} \langle Tx, \iota U_{g(n, p-1)} x' \rangle = \lim_{n \to \infty} \langle U_{g(n, p-1)} Tx, x' \rangle = \langle T^p x, x' \rangle$$

(we denoted g_n^{p-1} by g(n, p-1)); hence $U_{q^p} = T^p x$ for $x \in A$ and this implies (as in the proof of Theorem 1) $U_{q^p} x = T^p x$ for every $x \in \mathfrak{M}$.

If $\mathfrak{D} \subset \mathfrak{L}(X,X)$ we denote by $s(\mathfrak{D})$ the strong closure of \mathfrak{D} and by $\mathfrak{D}_r(r>0)$ the set $\{T \in \mathfrak{D} | ||T|| \leq r\}$. From Theorem 1 we can deduce the following (see [14]):

COROLLARY 1. If $\mathfrak{B} \subset s(\mathfrak{A}(\mathfrak{F}))$ then $\mathfrak{B}_1 \subset s(\mathfrak{A}(\mathfrak{F})_{M(\mathfrak{F})^2})$.

If $T \in \mathfrak{B}_1$ and A is a finite part of X then conditions (i) and (ii) are satisfied. Hence there is a $g \in L^1(Z, A)$ such that $\|g\| \leq M(\mathfrak{F})$ and $U_{\mathfrak{g}}x = Tx$ for $x \in A$. Now let $(g_n)_{1 \leq n < \infty}$ be a sequence of functions belonging to C(Z) for which $\lim_{n \to \infty} p(g_n - g, A) = 0$ (we can suppose that $\|g_n\| \leq M(\mathfrak{F})$ for $n = 1, 2, \cdots$, whence $\|U_{\mathfrak{g}_n}\| \leq M(\mathfrak{F})^2$). Then $\lim_{n \to \infty} \|Tx - U_{\mathfrak{g}_n}x\| = 0$ for every $x \in A$ and this implies that $T \in s(\mathfrak{A}(\mathfrak{F})_{M(\mathfrak{F})^2})$.

REMARK. From Corollary 1 it follows that if $\alpha(\mathfrak{F})_1$ is strongly closed then $\alpha(\mathfrak{F})$ is strongly closed.

COROLLARY 2. Suppose that $\mathfrak F$ has property (E) and that there exists a denumerable set $A \subset X$ such that the closed linear space spanned by $\bigcup_{x \in A} \alpha(\mathfrak F, \{x\})$ is X. Then $s(\alpha(\mathfrak F)) = \{U_f \in \mathfrak L(X,X) | f \in B_0^{\infty}(Z)\} = \{U_f \in \mathfrak L(X,X) | f \in B^{\infty}(Z)\}$.

We can suppose that $\sum_{x\in A} ||x|| < \infty$. If $T \in s(\alpha(\mathfrak{F}))$ we deduce, using Corollary 2, that there is a directed family $(T_j)_{j\in I}$ of operators belonging to $\alpha(\mathfrak{F})$ which converges uniformly to T, on A. Then by Theorem 1 there is a $g \in B_0^{\infty}(Z)$ such that $T = U_g$; hence $s(\alpha(\mathfrak{F})) \subset \{U_f \in \mathfrak{L}(X,X) | f \in B_0^{\infty}(Z)\}$. Since $\{U_f \in \mathfrak{L}(X,X) | f \in B_0^{\infty}(Z)\} \subset \{U_f \in \mathfrak{L}(X,X) | f \in B_0^{\infty}(Z)\} \subset s(\alpha(\mathfrak{F}))$ the corollary is completely proved.

Let X be a Banach space. We shall say that an algebra $\mathfrak{C} \subset \mathfrak{L}(X,X)$ has property (P_1) if there exists a compact space Z and a spectral family $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ of measures defined on Z such that $\mathfrak{C} = \mathfrak{C}(\mathfrak{F})$. Evidently an algebra $\mathfrak{C} \subset \mathfrak{L}(X,X)$ has property (P_1) if and only if there is a compact space Z and a continuous representation of the algebra C(Z) onto \mathfrak{C} (we can show that an algebra \mathfrak{C} has property (P_1) if and only if it is algebraically and topologically isomorphic to an algebra C(Z), where Z is a compact space). An algebra $\mathfrak{C} \subset \mathfrak{L}(X,X)$ has property (P_2) if there is a compact space Z and a spectral family \mathfrak{F} on Z having property (E) and such that $\mathfrak{C} = \mathfrak{C}(\mathfrak{F})$. If X is sequentially weakly complete then every algebra having property (P_1) clearly has property (P_2) .

If an algebra α has property (P_2) and \mathfrak{F} is a spectral family such that $\alpha = \alpha(\mathfrak{F})$, then F has property (E). This follows for instance from:

PROPOSITION 5. Let \mathfrak{F} be a spectral family. Then \mathfrak{F} has property (E) if and only if $\mathfrak{A}(\mathfrak{F})_1$ is relatively weakly compact.

It is obvious that \mathfrak{F} has property (E) if $\mathfrak{A}(\mathfrak{F})_1$ is relatively weakly compact. The fact that $\mathfrak{A}(\mathfrak{F})_1$ is relatively weakly compact if \mathfrak{F} has property (E) fol-

lows from Theorem 6, [11, p. 160] ($f \rightarrow U_f$ is weakly compact; we take on $\mathfrak{L}(X, X)$ the strong topology and we remark that every bounded closed part is complete). Theorem 3.2, [4, pp. 300-301] can also be used for the same purpose.

If $\mathfrak{D} \subset \mathfrak{L}(X,X)$ we denote by $\mathfrak{D}^{(p)}$ the set of all projections belonging to \mathfrak{D} .

COROLLARY. If $\alpha \subset \mathfrak{L}(X, X)$ is a strongly closed algebra having property (P_2) then $\alpha^{(p)}$ is a (bounded) complete boolean algebra.

Let Z be the spectrum of α and \mathfrak{F} a spectral family on Z such that $\alpha = \alpha(\mathfrak{F})$. Then $\alpha^{(p)} = \{E_{\mathfrak{F}}(\omega) | \omega \in S_0(Z)\}$ and hence $\alpha^{(p)}$ is bounded (by $M(\mathfrak{F})$). The completeness of $\alpha^{(p)}$ follows from the fact that $\alpha(\mathfrak{F})_{M(\mathfrak{F})}$ is weakly compact and from Theorem 1, [5, pp. 313–314] (see also [13, pp. 162–163]).

THEOREM 2. (i) If α has property (P_1) then $s(\alpha)$ has property (P_1) ; (ii) if α has property (P_2) then $s(\alpha)$ has property (P_2) .

Let us prove first (i). Take a compact space Z and a spectral family of measures on Z such that $\alpha = \alpha(\mathfrak{F})$. Let us introduce an involution on α as follows: $U_f^* = U_{\tilde{f}}$ for each $f \in C(Z)$; let us extend this involution by continuity to $s(\alpha)$. Let $T \in s(\alpha)$; then by Corollary 1 of Theorem 1, there is a uniformly bounded directed family of operators belonging to α , $(U_{f(j)})_{j \in I}$, which converges strongly to T. A simple use of the inequalities (4) and of the Cauchy inequality gives, for each $x \in X$ and $j \in I$: $||U_{f(j)}x||^2 \le p(f(j), \{x\})^2 \le M(\mathfrak{F})||x|| p(f(j)\tilde{f}(j), \{x\}) \le M(\mathfrak{F})^2||x|| ||U_{f(j)}U_{f(j)}^*x||$. We deduce $||Tx||^2 \le M(\mathfrak{F})||x|| ||TT^*x||$ for every $x \in X$ and hence $||T||^2 \le M(\mathfrak{F})||TT^*||$. Since this last inequality implies that $s(\alpha)$ is isomorphic algebraically and topologically with an algebra $C(\tilde{Z})$ the proof of (i) is complete. The second part of the theorem follows from the first, from Proposition 5 and from Corollary 1 of Theorem 1.

3. Strongly closed algebras of operators. For every s.c.a. spectral measure E, defined on a tribe $S_0(Z)$, we shall write $\Re(E) = \{E(\omega) \mid \omega \in S_0(Z)\}$. It is obvious that $\Re(E)$ is a σ -complete boolean algebra of projections.

Let E be a s.c.a. spectral measure defined on a tribe $S_0(Z)$ and let $\mathfrak F$ be the corresponding spectral family of measures. Let Z' be the spectrum of $\mathfrak G_0(\mathfrak F)$ and $\mathfrak F'=(\mu'_{x,x'})_{x\in X,x'\in X'}$ a spectral family on Z' such that $\mathfrak G_0(\mathfrak F)=\mathfrak C(\mathfrak F')$; it is easy to see that the closure of $\bigcup_{x\in X,x'\in X'} S(\mu'_{x,x'})$ is Z'.

Suppose $\mathfrak{R}(E)$ complete. Then Z' is stonean and every measure $\mu'_{x,x'}$ is normal. For the sake of completeness we give here a direct proof of these assertions. Let $U \subset Z'$ be an open subset and let

$$P' = \sup \{ P \in \mathfrak{R}(E) \mid P \leq U_{\mathfrak{F}', \phi_n} \}.$$

There is then an open and closed subset $U' \subset Z'$ such that $P' = U_{\mathfrak{F}', \phi_{U'}}$. If $U - U' \neq \emptyset$ we can find a function $g' \in C(Z')$, $g' \not\equiv 0$, whose support is con-

tained in U-U'. Let $g \in \mathfrak{B}_0(\mathfrak{F})$ be such that $U_{\mathfrak{F},\sigma} = U_{\mathfrak{F}',\sigma'}$ and let $E' = E(\{z \mid g(z) \neq 0\})$. By direct computation we obtain E'P' = 0 and if K is the support of g', $E' \leq U_{\mathfrak{F}',\phi_K} \leq U_{\mathfrak{F}',\phi_U}$; hence $P' < E' + P' \leq U_{\mathfrak{F}',\phi_U}$. It follows necessarily that $U \subset U'$ and $P' = U_{\mathfrak{F}',\phi_U}$. Therefore U' - U is \mathfrak{F}' -negligible and since $U' - \overline{U}$ is open, $U' = \overline{U}$. We deduce that Z' is stonean and that every measure $\mu'_{x,x'}$ is normal.

Theorem 3. Let E be a s.c.a. spectral measure defined on a tribe $S_0(Z)$ and let $\mathfrak F$ be the corresponding spectral family of measures. Suppose that $\mathfrak R(E)$ is complete. Then there is a Hilbert space H, a von Neumann algebra of operators $\mathfrak B$ on H and an algebraic isomorphism ϕ of $\mathfrak B_0(\mathfrak F)$ onto $\mathfrak B$ such that: (i) ϕ is bicontinuous when $\mathfrak B_0(\mathfrak F)$ and $\mathfrak B$ are endowed with their uniform topologies; (ii) the restriction of ϕ to bounded sets is weakly and strongly bicontinuous; (iii) $\phi(h(T)) = h(\phi(T))$ for every $T \in \mathfrak B_0(\mathfrak F)$, $h \in S_0(\sigma(T))$; (iv) $\phi(T^*) = \phi(T)^*$ for every $T \in \mathfrak B_0(\mathfrak F)$.

Let Z' be the spectrum of $\mathfrak{B}_0(\mathfrak{F})$ and $\mathfrak{F}' = (\mu'_{x,x'})_{x \in X, x' \in X'}$ a spectral family on Z' such that $\mathfrak{G}_0(\mathfrak{F}) = \mathfrak{A}(\mathfrak{F}')$. Then Z' is hyperstonean and every measure $\mu'_{x,x'}$ is normal. Then there is a Hilbert space H, a von Neumann algebra & on H and a *-isometry $f \rightarrow T_f$ of C(Z') onto \mathfrak{B} (see for instance [8]). If we write $\phi(U_{\mathfrak{F}',f})=T_f$, then ϕ is an algebraic isomorphism of $\mathfrak{B}_0(\mathfrak{F})$ onto \mathfrak{B} which has properties (i) and (iv). The weak continuity of ψ , the mapping inverse to ϕ , is a consequence of the fact that every measure $\mu'_{x,x'}$ is normal and hence that there are complex numbers c_1 , c_2 , c_3 , c_4 and a_1 , a_2 , a_3 , $a_4 \\in H$ such that $\langle U_{\mathfrak{F}',f}x, x' \rangle = \sum_{i=1}^4 c_i \langle T_f a_i | a_i \rangle$. The weak continuity of ϕ , on bounded sets, follows from the fact that \mathfrak{B}_1 is weakly compact. Therefore the first part of (ii) is proved. Now let \mathcal{O} be the set of linear forms $T \rightarrow \langle Tx, x' \rangle$, defined on $\mathfrak{B}_0(\mathfrak{F})$, which are positive on the elements TT^* ; it is obvious that the topology on $\mathfrak{B}_0(\mathfrak{F})$ defined by the set of semi-norms $\{|\rho| | \rho \in \mathfrak{P}\}$ coincide with the weak topology (see the remark at the end of paragraph 4). Denote by τ the topology on $\mathfrak{G}_0(\mathfrak{F})$ defined by the set of semi-norms $\{T \rightarrow \rho(TT^*)^{1/2} | \rho \in \emptyset\}$. Since T converges to T_0 in the topology τ if and only if $(T-T_0)(T-T_0)^*$ converges weakly to zero it follows that the restriction of ϕ to bounded sets is bicontinuous when $\mathfrak{B}_0(\mathfrak{F})$ is endowed with the topology au and $ilde{B}$ with the strong topology. Therefore, to complete the proof of (ii), it is enough to show that on each bounded subset of $\mathfrak{G}_0(\mathfrak{F})$ the strong topology coincides with τ . It is obvious that τ is weaker than the strong topology. Conversely suppose that the $U_{\mathfrak{F}',f}$ are uniformly bounded and that they converge to $U_{\mathfrak{F}',f(0)}$ in the topology τ . Then, for every $x\in X$, $x'\in X'$, $\lim \int |f-f(0)|^2 d|\mu'_{x,x'}| = 0$ and hence f converges in $|\mu'_{x,x'}|$ -measure to f(0). Since, for fixed $x \in X$, $\{\mu'_{x,x'} | \|x'\| \le 1\}$ is relatively weakly compact, we have $\lim \int \int d\mu'_{x,x'} = \int f(0)d\mu'_{x,x'}$, uniformly with respect to $||x'|| \le 1$; $x \in X$ being arbitrary it follows that $U_{\mathfrak{F}',f}$ converges strongly to $U_{\mathfrak{F}',f,\mathfrak{I},\mathfrak{I},\mathfrak{I}}$. Hence the proof of (ii) is complete. The assertion (iii) is an immediate consequence of (ii).

REMARKS. (1) The involution in $\mathfrak{G}_0(\mathfrak{F})$ is introduced by $U_{\mathfrak{F}',J} = U_{\mathfrak{F}',J}$ or, equivalently, by $U_{\mathfrak{F},J} = U_{\mathfrak{F},J}$. If $T \in \mathfrak{G}_0(\mathfrak{F})$ and E^T is the resolution of the identity of T, defined on $S_0(\sigma(T))$, it is easily seen that $T^* = \int_{\sigma(T)} \bar{\lambda} dE^T(\lambda)$. (2) Every $P \in \mathfrak{G}^{(p)}$ is a self-adjoint projection and ϕ is an order isomorphism of $\mathfrak{R}(E) = \mathfrak{G}_0(\mathfrak{F})^{(p)}$ onto $\mathfrak{G}^{(p)}$. (3) In connection with Theorem 3 see also [3, p. 37, Theorem 9.2]. (4) Some of the arguments involved in the proof of Theorem 3 can be avoided if we remark that (for an equivalent norm) $\mathfrak{G}_0(\mathfrak{F})$ is an AW*-algebra and use various known results concerning such algebras (see for instance [18]).

COROLLARY 1. Let E be a s.c.a. spectral measure, defined on a tribe $S_0(Z)$, and $\mathfrak F$ the corresponding spectral family. Then the following statements are equivalent: (j) $\mathfrak R(E)$ is complete; (jj) $\mathfrak R_0(\mathfrak F) = s(\mathfrak R_0(\mathfrak F))$; (jjj) $\mathfrak R(E) = s(\mathfrak R(E))$.

If $\Re(E)$ is a complete boolean algebra, (ii) implies that $\Re_0(\mathfrak{F})_1$ is strongly complete and hence that $\Re_0(\mathfrak{F})_1 = s(\Re_0(\mathfrak{F})_1)$; therefore we have $\Re_0(\mathfrak{F}) = s(\Re_0(\mathfrak{F}))$. If $\Re_0(\mathfrak{F}) = s(\Re_0(\mathfrak{F}))$ then $\Re_0(\mathfrak{F})^{(p)} = \Re(E)$ is obviously strongly closed. If $\Re(E) = s(\Re(E))$ it follows from Theorem 1, [5, pp. 313–314], that $\Re(E)$ is complete.

REMARKS. (1) The results stated in Corollary 1 are due to W. G. Bade [2, p. 358, Theorem 4.5]; the proof of the implications $(jj) \rightarrow (jjj) \rightarrow (j)$ is essentially the same as the one given in [2]. These assertions are justified by the proposition [2, p. 349]: If g is a σ -complete boolean algebra of projections in a Banach space then there exists a compact space Z and a s.c.a. spectral measure defined on $S_0(Z)$ such that $g = \Re(E)$. (2) From Corollary 1 follows that if \mathfrak{F} is a spectral family on Z having property (P_2) and such that $\mathfrak{G}_0(\mathfrak{F})$ is σ -finite (= every orthogonal set of projections belonging to the considered algebra is denumerable) then $\mathfrak{G}_0(\mathfrak{F})$ is strongly closed; this result can also be reduced to the corresponding one in Hilbert spaces if we use Theorem 3.

Let H be a Hilbert space and E^H a s.c.a. spectral measure, defined on a tribe $S_0(Z)$, such that $\mathfrak{R}(E) \subset \mathfrak{L}(H, H)$. We shall say that E^H is self-adjoint if $E^H(\omega)$ is self-adjoint for each $\omega \subseteq S_0(Z)$.

COROLLARY 2. Let E be a s.c.a. spectral measure, defined on a tribe $S_0(Z)$. Then: (j) there is a Hilbert space H, a s.c.a. self-adjoint spectral measure $E^H(\mathfrak{R}(E^H) \subset \mathfrak{L}(H, H))$, defined on $S_0(Z)$ and an order isomorphism ϕ of $\mathfrak{R}(E)$ onto $\mathfrak{R}(E^H)$ which is uniformly, strongly and weakly bicontinuous; (jj) ϕ can be extended (in a unique way) to an algebraic isomorphism, of the strongly closed algebra $\mathfrak{R}(E)$ spanned by $\mathfrak{R}(E)$ onto the strongly closed algebra $\mathfrak{R}(E^H)$ spanned by $\mathfrak{R}(E^H)$, having the properties (i)–(iv) (we replace here $\mathfrak{R}_0(\mathfrak{F})$ by $\mathfrak{R}(E)$ and \mathfrak{R} by $\mathfrak{R}(E^H)$) formulated in Theorem 3; (jjj) $\mathfrak{R}(E)$ is complete if and only if $\mathfrak{R}(E^H)$ is.

Let \mathfrak{F} be the spectral family corresponding to E; obviously $\mathfrak{R}(E) \subset \mathfrak{s}(\mathfrak{C}(\mathfrak{F}))$. By Theorem 3 there is a Hilbert space H, a von Neumann algebra $\mathfrak{C} \subset \mathfrak{L}(H,H)$ and an algebraic isomorphism ϕ of $s(\mathfrak{A}(\mathfrak{F}))$ onto \mathfrak{A} , which has the properties (i)-(iv). If we take $E^H(\omega) = \phi(E(\omega))$, for $\omega \in S_0(Z)$, then E^H is a s.c.a. self-adjoint spectral measure on $S_0(Z)(\mathfrak{A}(E^H) \subset \mathfrak{L}(H, H))$ and ϕ is an order isomorphism of $\mathfrak{A}(E)$ onto $\mathfrak{A}(E^H)$ which is uniformly, strongly and weakly bicontinuous. Hence the proof of (j) is complete. The results (jj) (we use for its proof Corollary 1 of Theorem 1) and (jjj) are now obvious.

REMARKS. (1) An immediate consequence of Corollary 2 (see the remarks which follow Theorem 3) is the proposition: On a σ -complete boolean algebra of projections the weak and the strong topology coincide. (2) Theorem 4.7, [2, p. 359] can be deduced from Corollary 5.3, [17, p. 38] if we use Theorem 3. (3) Using Theorem 3 we can also prove the following proposition: If α is a strongly closed algebra containing I, σ -finite, generated (in the strong topology) by a denumerable set and having property (P_2) then there is an operator $T \in \alpha$ with real spectrum such that every $U \in \alpha$ is of the form h(T) where $h \in \mathcal{B}_0^{\infty}(\sigma(T))$.

Using Theorem 3 and, for instance, Corollary 1, [9, p. 57] we deduce the following:

COROLLARY 3. Let $\alpha(1) \subset \mathfrak{L}(X_1, X_1)$, $\alpha(2) \subset \mathfrak{L}(X_2, X_2)$ be two strongly closed algebras having property (P_2) and ϕ an algebraic isomorphism of $\alpha(1)$ onto $\alpha(2)$ such that $\phi(T^*) = \phi(T)^*$. Then ϕ is bicontinuous when $\alpha(1)$ and $\alpha(2)$ are endowed with their uniform topologies. The restriction of ϕ to bounded sets is strongly and weakly bicontinuous.

4. Remarks on spectral families having property (E). Proposition (*) stated at the end of paragraph 1 follows from Theorem 1.4 and Lemma 2.3 [4] or from Theorems 1.3 and 1.4 [4]. Instead of Lemma 2.3 or Theorem 1.3 [4] we can use, for the proof of (*), Theorem 2 [11].

From Theorem 1.4 [4], taking into account the form of the measure ν (constructed in the proof of this theorem), we can deduce the following result: (**) Let \mathfrak{C} be a weakly relatively compact set of Radon measures on a compact space Z. Then there is a Radon measure $\nu \geq 0$ such that: (1) $\nu(f) \leq \sup_{\mu \in \mathfrak{C}} |\mu|(f)$ for $f \geq 0$; $\nu(N) = 0$ (for $N \in S_0(Z)$) if and only if $|\mu|(N) = 0$ for every $\mu \in \mathfrak{C}$. Using (**) we can immediately prove the following proposition due to W. G. Bade (Theorem 3.1, [2, pp. 351–353]): Let Z be a compact space and $\mathfrak{F} = (\mu_{x,x'})_{x \in X, x' \in X'}$ a spectral family of measures given on Z, having property (E). Then for every $y \in X$ there is a $\nu_y = \mu_{y,y'} \geq 0$ such that every $\mu_{y,x'}$ is absolutely continuous with respect to ν_y . In fact take $\mathfrak{C} = \{\mu_{y,x'} | ||x'|| \leq 1\}$ and $\nu_y = \nu$. We then have $\nu_y(|f|) \leq p(f, \{y\})$ for every $f \in C(Z)$. Define β on $X_y = \{U_f y | f \in C(Z)\}$ by the equation: $\beta(U_f y) = \int f d\nu_y$. Using the inequalities $\nu_y(|f|) \leq p(f, \{y\}) \leq M(\mathfrak{F}) ||U_f y||$ we deduce that β is defined on X_y without ambiguity and that it is continuous; β can therefore be extended to X. If we denote the extension by y', then $\nu_y = \mu_{y,y'}$.

By the same method, but without using proposition (**) or (*), we prove that every measure $|\mu_{x,x'}|$ is a measure $\mu_{y,y'}$.

Let α be a strongly closed algebra having property (P_2) and \mathfrak{F} a spectral family of measures defined on the spectrum of α such that $\alpha = \alpha(\mathfrak{F})$. We have then the following proposition (which we shall state without proof): Every measure $\mu_{x,x'}$ is normal and every normal measure on Z is absolutely continuous with respect to a measure $\mu_{x,x'} \geq 0$. In the case of Hilbert spaces more precise results are valid (see [8] and [16]).

REFERENCES

- 1. W. G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. vol. 4 (1954) pp. 393-414.
- 2. ——, On boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. vol. 80 (1955) pp. 345-360.
- 3. —, A multiplicity theory for boolean algebras of projections in Banach spaces, University of California, Technical Report no. 18, Office of Naval Research, December, 1957.
- 4. R. J. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. vol. 7 (1955) pp. 289-305.
- 5. J. Y. Barry, On the convergence of ordered sets of projections, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 313-314.
 - 6. N. Bourbaki, Intégration, Livre VI, Chapters I-V, Paris, 1952-1957.
 - 7. J. Dieudonné, Sur la théorie spectrale, J. Math. Pures Appl. vol. 35 (1956) pp. 175-187.
- 8. J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. vol. 2 (1951) pp. 151-182.
 - 9. ——, Les algèbres d'opérateurs dans l'espace hilbertien, Paris, 1957.
 - 10. N. Dunford, Spectral operators, Pacific J. Math. vol. 4 (1954) pp. 321-354.
- 11. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. vol. 5 (1953) pp. 129-173.
 - 12. P. Halmos, Measure theory, New York, 1950.
- 13. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, 1957.
 - 14. I. Kaplansky, A theorem on rings of operators, Pacific J. Math. vol. 1 (1951) pp. 227-232.
 - 15. W. A. J. Luxemburg, Banach function spaces, Delft, Netherlands, 1955.
- 16. Robert Pallu de la Barrière, Sur les algèbres d'opérateurs dans les espaces hilbertiens, Bull. Soc. Math. France vol. 82 (1954) pp. 1-52.
- 17. I. E. Segal, Decompositions of operator algebras II, Memoirs Amer. Math. Soc., no. 9, 1951.
 - 18. Ti Yen, Trace on finite AW*-algebras, Duke Math. J. vol. 22 (1955) pp. 207-222.

YALE UNIVERSITY,

NEW HAVEN. CONNECTICUT